\[\gdef{\S}{\mathcal{S}} % Note: overrides existing command \gdef{\O}{\mathcal{O}} % Note: overrides existing command \gdef{\F}{\mathcal{F}} \gdef{\N}{\mathcal{N}} \gdef{\R}{\mathbb{R}} \gdef{\Nat}{\mathbb{N}} \gdef{\sign}{sign} \gdef{\L}{\mathcal{L}} \gdef{\C}{\mathcal{C}} \gdef{\V}{\mathcal{V}} \gdef{\W}{\mathcal{W}} \gdef{\G}{\mathcal{G}} \gdef{\vle}{\preceq} % Source and fact orderings \gdef{\sle}{\sqsubseteq} \gdef{\slt}{\sqsubset} \gdef{\sge}{\ge} \gdef{\seq}{\simeq} \gdef{\fle}{\preceq} \gdef{\flt}{\prec} \gdef{\fgt}{\succ} \gdef{\fge}{\succeq} \gdef{\feq}{\approx} \gdef{\src}{\mathsf{src}} \gdef{\facts}{\mathsf{facts}} \gdef{\obj}{\mathsf{obj}} \gdef{\mut}{\mathsf{mut}} \gdef{\orderings}{\mathcal{L}} \gdef{\num}{\mathcal{T}_{Num}} \gdef{\rec}{\mathsf{rec}} \gdef{\norm}{\mathsf{norm}} \gdef{\ord}#1{\langle{#1}\rangle} % Shortcuts \gdef{\limn}{\lim_{n \to \infty}} \gdef{\voting}{\emph{Voting}} \gdef{\sums}{\emph{Sums}} \gdef{\usums}{\emph{UnboundedSums}} \gdef{\avlog}{\emph{Average$\cdot$Log}} \gdef{\scvoting}{\emph{SC-Voting}} \gdef{\scoh}{\mathrel{\lhd}} \gdef{\fcoh}{\mathrel{\blacktriangleleft}} \gdef{\tuple}#1{{\langle{#1}\rangle}}\]

Fuzzy TD demo

This is an idea to apply the Fuzzy Argumentation Frameworks (FAFs) and semantics of [JDCV08] to truth discovery.

Constructing a FAF from a TD network

This demo uses the following idea to construct a FAF:

  • Consider a fixed fuzzy set \(T: \S \to [0, 1]\).

  • Say that \(f\) and \(g\) attack each other when there is some source \(s\) claiming \(f\) and some source \(t\) claiming \(g\), but \(s\) and \(t\) disagree when it comes to some object.

  • The strength of \(f \nrightarrow g\) is the maximal trust degree of such \(s\).

  • We exclude an argument attacking itself.

Formally, write \(C(s)\) for the set of sources conflicting with \(s\), i.e.

\[C(s) = \{t \in \S : \exists f, g \in \F : \obj(f) = \obj(g), f \ne g, s \in \src(f), t \in \src(g)\}.\]

Then for \(f \ne g\), write

\[K_{f, g} = \{s \in \S : s \in \src(f), C(s) \cap \src(g) \ne \emptyset \}\]

i.e. \(K_{f, g}\) is the set of sources who believe in \(f\) and conflict with a believer of \(g\) (note that the disagreement may be due to another object; \(f\) and \(g\) need not be for the same object here).

Finally, define

\[\nrightarrow(f, g) = \begin{cases} 0 & \text{ if } f = g \text{ or } K_{f, g} = \emptyset \\ \max_{K_{f, g}}{T} \end{cases}\]

Demo

Enter the TD network in the textarea. Each line should be of the form

<source> - <fact> - <object>

Note that sources, facts and objects are drawing in the order of first appearance. There is no validation to check that sources do not claim multiple times for a single object.

The fuzzy set \(T\) and the fuzzy “extension” are controlled with the sliders (updated once the textarea loses focus). See the paper [JDCV08] for the meaning of the semantics.

The demo uses the minimum t-norm and its induced S-implicator for the fuzzy logical operations.

Truth discovery network
Trustworthy sources Fact set
Fuzzy attack relation Fuzzy semantics